
!"#$%!&'()!"*#+,#-+.'%/01'%##

Thomas Hildebrandt , Marco Carbone, and Tijs Slaats

Process and System Models Group
IT University of Copenhagen, Denmark

RSVP: Live Sessions with Responses
(or Work in Progress on Liveness)

1st International Workshop on Behavioral Types (BEATÕ13)
Rome, Jan. 22, 2013 (collocated with POPL 2013)

Thursday, January 24, 13

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

(359#D5E

¥Example: An inÞnite Buyer/Seller session

¥Specifying Liveness as Responses

¥Live Session Types by Example

¥Type Rules (outline)

¥Ongoing and Future Work

2

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

FG7=5<HI#):6673=#>HE:6
¥Session type for Buyer:

¥Session type for Seller:

¥Typing guarantees: No communication
errors and in-session progress

3

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formulaG (a =!
Fb), whereG is read asgenerally, i.e. in all future steps, andF
readsfuture, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite

set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulasG (a =! F !),
where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .

Instead of using the LTL notation, we will use the shorter nota-
tion a ¥$! as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k !

#
$

%

offer : k?(x). if (notEnough(x)) then
k # more. X elsek # ok. X

stop : X

&
'

(

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

µX. k !
!

offer : k?(x). k # ok. X
stop : X

"

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formulaG (a =!
Fb), whereG is read asgenerally, i.e. in all future steps, andF
readsfuture, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite

set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulasG (a =! F !),
where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .

Instead of using the LTL notation, we will use the shorter nota-
tion a ¥$! as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). & { more: t, ok : t} ,
stop : t

"

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k !

#
$

%

offer : k?(x). if (notEnough(x)) then
k # more. X elsek # ok. X

stop : X

&
'

(

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

J7K:=:66#56#(:6E3=6:6

¥Consider the liveness property Òevery
is eventually followed by an or a Ó.

¥This is an instance of a the common
request-response pattern:

where a= and b=

4

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formula

G (a =! Fb),

whereG is read asgenerally, i.e. in all future steps, andF reads
future, i.e. eventually in some future step. It may also be described
in CTL as:

AG (a =! AF b).

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite
set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas

G (a =! F !),

where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .
Instead of using the LTL notation, we will use the shorter nota-

tion a ¥$! as also used in e.g. [6, 9, 10].
Before embarking, we want to remark that a liveness property is

sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). & { more: t, ok : t} ,
stop : t

"

(CTL)
(LTL)

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formula

G (a =! Fb),

whereG is read asgenerally, i.e. in all future steps, andF reads
future, i.e. eventually in some future step. It may also be described
in CTL as:

AG (a =! AF b).

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite
set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas

G (a =! F !),

where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .
Instead of using the LTL notation, we will use the shorter nota-

tion a ¥$! as also used in e.g. [6, 9, 10].
Before embarking, we want to remark that a liveness property is

sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). & { more: t, ok : t} ,
stop : t

"

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

2

(DCRG)

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formula

G (a =! Fb),

whereG is read asgenerally, i.e. in all future steps, andF reads
future, i.e. eventually in some future step. It may also be described
in CTL as:

AG (a =! AF b).

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite
set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulas

G (a =! F !),

where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .
Instead of using the LTL notation, we will use the shorter nota-

tion a ¥$! as also used in e.g. [6, 9, 10], and thusa ¥$ b for the
special case where! is a single labelb.

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). & { more: t, ok : t} ,
stop : t

"

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

%3=L87K:#5=9#87K:#):88:<

¥Two implementations of seller that differ with
respect to the property

5

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formulaG (a =!
Fb), whereG is read asgenerally, i.e. in all future steps, andF
readsfuture, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite

set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulasG (a =! F !),
where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .

Instead of using the LTL notation, we will use the shorter nota-
tion a ¥$! as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &

!
offer :?(int). % { more : t, ok : t } ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). &{ more : t, ok : t } ,
stop : t

"

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

#
$

%

offer : k?(x). if (notEnough(x)) then
k # more. X elsek # ok. X

stop : X

&
'

(
gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
!

offer : k?(x). k ! ok. X
stop : X

"

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
!

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

"

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually

followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

The typing rules are given in Figure??. Since we treat! and
$ similarly to standard session typing [7], we only comment those
rules relevant for the property we wish to ensure.

Properties of Live Session TypingWe now give a series of results
guaranteed by the presented typing system. The Þrst two results are
an adaptation of [7].

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

J7K:#):6673=6#M7>2#(:6E3=6:6

¥We propose annotating branching labels in e.g.

by disjunctive responses:

6

gives an implementation where, for some values of x , the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
!

offer : k?(x). k ! ok. X
stop : X

"

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
!

offer [ok ! stop] :?(int). " { more : t, ok : t } ,
stop : t

"

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the " -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other first-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr (P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l ¥# $ for
$ = l1 ! . . . lm if any occurrence of the label l is eventually

followed by a label l i for some i % { 0, . . . , m} , and in general,
a trace satisfies the property l ¥# # for # = $0 $. . . $n " 1 if it
satisfies l ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | &{ l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in &. The type ' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g., int
or bool), a service channel of type ' &(, or a session channel of type
&. Finally, &{ l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually write l for l [)].

Typing. We can now give a typing system for typing processes in
the " -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where ! is the service environment, " is the process environment,
is the response environmentand $ is the session environment. !
and $ are assignments from service and session channels respec-
tively to session types with responses. The enviornment # records
for each session k to the responses that are still pending. The envi-
ronment " maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a label l and disjunctive response # we define the operation
#/l inductively as follows. For the base cases, define) /l =) ,
and $/l =) if $ = l1 ! . . . ! ln and l = l i for some i % n, and
$/l = $ otherwise. For the inductive case define ($ $ #)/l = #/l ,
if $/l =) and ($ $ #)/l = $ $ #/l otherwise.

We then use () , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : ($, () , #)), (l, ! !) = X : ($, () $ l, # $ #!)). and
extend it inductively to process environments in the obvious way.

The typing rules are given in Figure ??. Since we treat ! and
$ similarly to standard session typing [7], we only comment those
rules relevant for the property we wish to ensure.

Properties of Live Session TypingWe now give a series of results
guaranteed by the presented typing system. The first two results are
an adaptation of [7].

2

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formulaG (a =!
Fb), whereG is read asgenerally, i.e. in all future steps, andF
readsfuture, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite

set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulasG (a =! F !),
where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .

Instead of using the LTL notation, we will use the shorter nota-
tion a ¥$! as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &
!

offer :?(int). %{ more: t, ok : t} ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The protocol (session) described above could be implemented
in several ways. For instance,

µX. k !

#
$

%

offer : k?(x). if (notEnough(x)) then
k # more. X elsek # ok. X

stop : X

&
'

(

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

µX. k !
!

offer : k?(x). k # ok. X
stop : X

"

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

¥Now the two implementations

are not both well-typed wrt

7

Live Sessions with Responses

Marco Carbone
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

carbonem@itu.dk

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Tijs Slaats
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

Exformatics A/S
Lautrupsgade 13

2100 Copenhagen, Denmark
tslaats@itu.dk

Abstract
We discuss ongoing work onsessions with responsesas an exten-
sion of standard session types allowing to specify liveness prop-
erties. Concretely, sessions with responses are speciÞed by anno-
tating branching and selection labels with a Þnite conjunction of
disjunctive responses. A disjunctive response is a Þnite disjunc-
tion of labels, and the intended meaning is that whenever a label
is selected, one of the labels in each of the disjunctive responses
is eventually selected. We illustrate the use of live sessions by a
buyer/seller example where the buyer and seller engage in a po-
tential inÞnite number of deals, and for each deal negotiates about
the price but must eventually either agree or stop the negotiation.
We informally describe a typing system for guaranteeing that well
typed processes are live in this sense and discuss ongoing and fu-
ture work.

Categories and Subject DescriptorsCR-number [subcategory]:
third-level

Keywords Session types, liveness

1. Introducing Live Sessions
Session types Þrst appeared in [7] as types for abstracting commu-
nication patterns within a session. As a beneÞt, besides facilitating
the design of distributed protocols, they can be used for guaran-
teeing in-session properties such assafety(lack of communication
errors) andprogress(a session never gets stuck).

Several other works following [7] propose different extensions
of session types, including extensions to multiparty sessions [8],
exceptions [4], Object-Oriented Programming [5], and many more.

However, the current state of the art focuses on proving that
well-typed systems enjoy, at least, progress in the above meaning
that a session never gets stuck. In many places, the term progress is
used more generally in the meaning ofliveness, i.e. that something
goodwill eventually happen, and not justsomethingwill eventually
happen.

A fundamental and very common form of liveness property is
the request-responseproperty: ÓWhenever some eventa occurs,
some eventb will eventually occur in the futureÓ [2]. The request-
response property may be speciÞed by the LTL formulaG (a =!
Fb), whereG is read asgenerally, i.e. in all future steps, andF
readsfuture, i.e. eventually in some future step.

In the present short paper, we consider the possibility of enhanc-
ing session types to capture a generalization of the request-response
property that we will refer to as thedisjunctiveresponse property:
ÓWhenever some eventa occurs, one event out of a given Þnite

set of response events{ b1, . . . , bn } will eventually occur in the fu-
tureÓ. We will allow several such disjunctive responses for the same
event a, which will then correspond to formulasG (a =! F !),
where! = "0 " "1 " . . . " "n ! 1 for " i = b1 # . . . # bm i .

Instead of using the LTL notation, we will use the shorter nota-
tion a ¥$! as also used in e.g. [6, 9, 10].

Before embarking, we want to remark that a liveness property is
sometimes deÞned as a property that can not be violated in Þnitely
many steps [1, 2]. This makes perfect sense for non-terminating
processes or if termination can not be detected. However, as ses-
sions may indeed terminate, we intend also to identify violations in
Þnite executions. For instance, the request-response property can
be violated if the process terminates with an ÓopenÓ request, i.e. a
request that has not yet been responded to.

We illustrate our idea by giving an informal motivating example
of a session type that we extend with annotations expressing the
request-response property.

First, recall that a session type is a sequence of i/o actions
specifying the expected communication done by one of the parties
engaged in a session. For example, consider a buyer-seller scenario
where a buyer and seller engage in a potential inÞnite number of
deals, and for each deal negotiates about the price. In a negotiation,
the buyer can either give an offer or stop the negotiation. If the
buyer gives an offer, the seller can either ask for more or say it is
ok. In a such a scenario, the sellerÕs behaviour could be speciÞed
by the following session type:

µt. &

!
offer :?(int). % { more : t, ok : t } ,
stop : t

"

The type above describes a non terminating session, where the
seller is offering the buyer two options, namelyoffer andstop .
If the Þrst option is selected by the buyer then the seller expects to
receive an integer and then selects eithermoreor ok. Anyhow, after
any option is chosen, such a behaviour is reiterated again.

The buyerÕs behaviour could be speciÞed by the following
(dual) session type:

µt. %
!

offer :!(int). &{ more : t, ok : t } ,
stop : t

"

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

#
$

%

offer : k?(x). if (notEnough(x)) then
k # more. X elsek # ok. X

stop : X

&
'

(

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
!

offer : k?(x). k ! ok. X
stop : X

"

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
!

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

"

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.

Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually

followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-
SEL rules)X : ($, () , #)) , (l, ! !) = X : ($, () $ l, # $ #!)) . and
extend it inductively to process environments in the obvious way.

The typing rules are given in Figure??. Since we treat! and
$ similarly to standard session typing [7], we only comment those
rules relevant for the property we wish to ensure.

Properties of Live Session TypingWe now give a series of results
guaranteed by the presented typing system. The Þrst two results are
an adaptation of [7].

2

gives an implementation where, for some values of x , the seller
could decide to infinitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
!

offer : k?(x). k ! ok. X
stop : X

"

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the specification as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that the ok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
!

offer [ok ! stop] :?(int). " { more : t, ok : t } ,
stop : t

"

The first process above should then not be well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the " -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the definition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range over service (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other first-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a process P , denoted by fsc(P) (fv(P)), are
defined as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to define the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of finite and infinite traces of labels of the
process P.

Liveness We can now define the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness). Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr (P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}
there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the property l ¥# $ for
$ = l1 ! . . . lm if any occurrence of the label l is eventually

followed by a label l i for some i % { 0, . . . , m} , and in general,
a trace satisfies the property l ¥# # for # = $0 $. . . $n " 1 if it
satisfies l ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | &{ l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in &. The type ' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g., int
or bool), a service channel of type ' &(, or a session channel of type
&. Finally, &{ l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, and end is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually write l for l [)].

Typing. We can now give a typing system for typing processes in
the " -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where ! is the service environment, " is the process environment,
is the response environmentand $ is the session environment. !
and $ are assignments from service and session channels respec-
tively to session types with responses. The enviornment # records
for each session k to the responses that are still pending. The envi-
ronment " maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulfill) the accumulated responses. Define
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a label l and disjunctive response # we define the operation
#/l inductively as follows. For the base cases, define) /l =) ,
and $/l =) if $ = l1 ! . . . ! ln and l = l i for some i % n, and
$/l = $ otherwise. For the inductive case define ($ $ #)/l = #/l ,
if $/l =) and ($ $ #)/l = $ $ #/l otherwise.

We then use () , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then define the accumulation operator (used in the T-BRA and T-
SEL rules) X : ($, () , #)), (l, ! !) = X : ($, () $ l, # $ #!)). and
extend it inductively to process environments in the obvious way.

The typing rules are given in Figure ??. Since we treat ! and
$ similarly to standard session typing [7], we only comment those
rules relevant for the property we wish to ensure.

Properties of Live Session TypingWe now give a series of results
guaranteed by the presented typing system. The first two results are
an adaptation of [7].

2

J7K:#):6673=6#M7>2#(:6E3=6:6#!!

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

J7K:#):6673=#"HE:6#)H=>5N
¥Live session types syntax is given by

8

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

where

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

i.e.

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

"2:#):6673=#-58OA8A6#F)-I
¥We assume a ÒstandardÓ session calculus

9

P ::= a(k). P (accept) | a(k). P (request)
| k?(x). P (input) | k!!e". P (output)
| k((k!)) . P (inputS) | k!! k! "". P (delegation)
| k ! { l i : Pi } i " I (branch) | k " l . P (select)
| 0 (inact) | P | Q (par)
| (! k) P (resSess) | (! a) P (resServ)
| X (termVar) | µX . P (recursion)
| if e then P elseQ (cond)

Figure 1. Syntax for the Calculus

(RINIT) !a(k). P | a(k). Q ! !a(k). P | (! k) (P | Q) (INIT) a(k). P | a(k). Q ! (! k) (P | Q)

(COM) k?(x). P | k!"e#. Q ! P [v/x] | Q (e $ v) (DEL) k((k!)) . P | k""k! ##. Q ! P | Q

(SEL) k ! { l i : Pi } i " I | k " l j . Q
l j

%! Pj | Q (j & I) (PAR) P ! P ! ' P | Q ! P ! | Q

(RES) P ! P ! ' (! k) P ! (! k) P ! (STR) P (Q, Q ! Q! , Q! (P ! ' P ! P !

(IFT) if e then P elseQ ! P (e $ tt) (IFF) if e then P elseQ ! Q (e $!)

Figure 2. Labelled Transition Semantics for the Calculus

(T-ACC)
! , a : "##; ") k ; k : * + P ! k : #

! , a : "##; " ; * + a(k). P ! *
(T-REQ)

! , a : "##; ") k ; # ák : * + P ! $ ák : #

! , a : "##; " ; # + a(k). P ! $

(T-IN)
! , x : S; " ; # + P ! $ ák : #

! ; " ; # + k?(x). P ! $ ák : ?(S). #
(T-OUT)

! ; " ; # + P ! $ ák : # ! + e : S

! ; " ; # + k!"e#. P ! $ ák : !(S). #

(T-SEL)
! ; " , k (l j , $j); # ák : ($/l j) - $j + P ! $ ák : # j

! ; " ; # ák : $ + k " l j . P ! $ ák :) { l i [$i] : # i }
(T-DEL)

! ; " ; # + P ! $ ák : #

! ; " ; # + k""k! ##. P ! $ ák : !(%). # ák! : %

(T-BRA)
! ; " , k (l i , $i); # ák : ($/l i) - $i + Pi ! $ ák : # i

! ; " ; # , k : $ + k ! { l i : Pi } i " I ! $ ák : & { l i [$i] : # i }
(T-INS)

! ; " ; # + P ! $ ák : # ák! : %

! ; " ; # + k((k!)) . P ! $ ák : ?(%). #

(T-PAR)
! ; # i + Pi ! $ i $ 1 . $ 2 # 1 . # 2

! ; # 1 / # 2 + P1 | P2 ! $ 1 / $ 2
(T-END)

i = end # = k1 : 0 á. . . ákn : 0

! ; # + 0 ! k1 : # 1 á. . . ákn : # n

(T-COND)
! + e : bool ! ; " ; # + Pi ! $

! ; " ; # + if e then P1 elseP2 ! $
(T-RES)

! ; " ; # + P ! $ ák : 1

! ; " ; # + (! k) P ! $

(T-BOT)
! ; " ; # + P ! $ ák : end

! ; " ; # + P ! $ ák :1
(T-REC)

! ; " , X : ($; 0 ($, #)); # + P ! $

! ; " ; # + µX.P ! $

(T-VAR)
2k & dom(%) fst(%(k)) = ' snd(%(k))

! ; " , X : ($; %); # + X ! $
where 0 ($, #) returns a%, mapping everyk in $ to (0 , # (k))

Figure 3. Typing Rules for Session Types

4. Conclusions, Ongoing and Future Work
Above we have suggested extending session types to allow ex-
pressinglivenessproperties. As a starting point, we considered
liveness properties stated as a generalisation of the fundamental
request-response pattern. We proposed that these properties could
be expressed in session types by annotating labels in selections and
branchings withdisjunctive responses.

This is ongoing work. We believe we have a sound and complete
set of live session type rules conservatively generalising standard
session types. Soundness means in this setting, that every well-
typed process satisfy the liveness property expressed by the re-
sponse annotations as deÞned in Def. 1 and is well-typed according
to the underlying (standard) session type. Completeness means that
each process which is well-typed according to the underlying ses-
sion type and satisfy the liveness property expressed as response
annotations will be well-typed according to the live session type

rules.The general idea of the typing rules are to keep track of accu-
mulated response requirements for each session, and also for each
loop within sessions, and check fulÞlment of responses at recursion
points and when sessions end.

Note that a consequence of the response annotations, for a given
live session type there may be no well-typed processes if a required
response is not allowed by the underlying session type, e.g. if none
of the requested responses are possible future labels.

The response annotations relate to the recent work on transition
systems with responses in [3] and also the work on DCR Graphs
in [6, 9] and declarative process models in [10].

For future work we consider generalising the liveness proper-
ties to also allow session start as a request event, and session-end
as a response event. This would e.g. allow expressing the general
property that if a particular session is started, it must be ended. As
liveness constraints are often veriÞed under some fairness assump-

3

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

J7K:=:66

10

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt . &
'

offer [ok ! stop] :?(int). " { more : t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k

!
, t, s, . . . over session (or private) channels; and

e, e

!
, . . . over public channels, and arithmetic and other Þrst-order

expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = li, 1 ! . . . ! li,m i . A trace%%Tr (P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for alli %{ 0, . . . , n & 1}

there existsj % { 1, . . . ,mi } such that there existsk!
> k for

which%k ! = li,j .
We say that a processP has the liveness property wrt a set of

response liveness propertiesP whenever each trace%ofP satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labelli for
somei %{ 0, . . . ,m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | &{ li [#i] : &i } | " { li [#i] : &i } |
end | µt . & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, &{ li [#i] : &i } and " { li [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l[)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = li for somei %n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

¥Annotated reaction semantics :

P ::= a(k). P (accept) | a(k). P (request)
| k?(x). P (input) | k!!e". P (output)
| k((k!)) . P (inputS) | k!! k! "". P (delegation)
| k ! { l i : Pi } i " I (branch) | k " l . P (select)
| 0 (inact) | P | Q (par)
| (! k) P (resSess) | (! a) P (resServ)
| X (termVar) | µX . P (recursion)
| if e then P elseQ (cond)

Figure 1. Syntax for the Calculus

(RINIT) !a(k). P | a(k). Q ! !a(k). P | (! k) (P | Q) (INIT) a(k). P | a(k). Q ! (! k) (P | Q)

(COM) k?(x). P | k!"e#. Q ! P [v/x] | Q (e $ v) (DEL) k((k!)) . P | k""k! ##. Q ! P | Q

(SEL) k ! { l i : Pi } i " I | k " l j . Q
l j

%! Pj | Q (j & I) (PAR) P ! P ! ' P | Q ! P ! | Q

(RES) P ! P ! ' (! k) P ! (! k) P ! (STR) P (Q, Q ! Q! , Q! (P ! ' P ! P !

(IFT) if e then P elseQ ! P (e $ tt) (IFF) if e then P elseQ ! Q (e $!)

Figure 2. Labelled Transition Semantics for the Calculus

(T-ACC)
! , a : "##; ") k ; k : * + P ! k : #

! , a : "##; " ; * + a(k). P ! *
(T-REQ)

! , a : "##; ") k ; # ák : * + P ! $ ák : #

! , a : "##; " ; # + a(k). P ! $

(T-IN)
! , x : S; " ; # + P ! $ ák : #

! ; " ; # + k?(x). P ! $ ák : ?(S). #
(T-OUT)

! ; " ; # + P ! $ ák : # ! + e : S

! ; " ; # + k!"e#. P ! $ ák : !(S). #

(T-SEL)
! ; " , k (l j , $j); # ák : ($/l j) - $j + P ! $ ák : # j

! ; " ; # ák : $ + k " l j . P ! $ ák :) { l i [$i] : # i }
(T-DEL)

! ; " ; # + P ! $ ák : #

! ; " ; # + k""k! ##. P ! $ ák : !(%). # ák! : %

(T-BRA)
! ; " , k (l i , $i); # ák : ($/l i) - $i + Pi ! $ ák : # i

! ; " ; # , k : $ + k ! { l i : Pi } i " I ! $ ák : & { l i [$i] : # i }
(T-INS)

! ; " ; # + P ! $ ák : # ák! : %

! ; " ; # + k((k!)) . P ! $ ák : ?(%). #

(T-PAR)
! ; # i + Pi ! $ i $ 1 . $ 2 # 1 . # 2

! ; # 1 / # 2 + P1 | P2 ! $ 1 / $ 2
(T-END)

i = end # = k1 : 0 á. . . ákn : 0

! ; # + 0 ! k1 : # 1 á. . . ákn : # n

(T-COND)
! + e : bool ! ; " ; # + Pi ! $

! ; " ; # + if e then P1 elseP2 ! $
(T-RES)

! ; " ; # + P ! $ ák : 1

! ; " ; # + (! k) P ! $

(T-BOT)
! ; " ; # + P ! $ ák : end

! ; " ; # + P ! $ ák :1
(T-REC)

! ; " , X : ($; 0 ($, #)); # + P ! $

! ; " ; # + µX.P ! $

(T-VAR)
2k & dom(%) fst(%(k)) = ' snd(%(k))

! ; " , X : ($; %); # + X ! $
where 0 ($, #) returns a%, mapping everyk in $ to (0 , # (k))

Figure 3. Typing Rules for Session Types

4. Conclusions, Ongoing and Future Work
Above we have suggested extending session types to allow ex-
pressinglivenessproperties. As a starting point, we considered
liveness properties stated as a generalisation of the fundamental
request-response pattern. We proposed that these properties could
be expressed in session types by annotating labels in selections and
branchings withdisjunctive responses.

This is ongoing work. We believe we have a sound and complete
set of live session type rules conservatively generalising standard
session types. Soundness means in this setting, that every well-
typed process satisfy the liveness property expressed by the re-
sponse annotations as deÞned in Def. 1 and is well-typed according
to the underlying (standard) session type. Completeness means that
each process which is well-typed according to the underlying ses-
sion type and satisfy the liveness property expressed as response
annotations will be well-typed according to the live session type

rules.The general idea of the typing rules are to keep track of accu-
mulated response requirements for each session, and also for each
loop within sessions, and check fulÞlment of responses at recursion
points and when sessions end.

Note that a consequence of the response annotations, for a given
live session type there may be no well-typed processes if a required
response is not allowed by the underlying session type, e.g. if none
of the requested responses are possible future labels.

The response annotations relate to the recent work on transition
systems with responses in [3] and also the work on DCR Graphs
in [6, 9] and declarative process models in [10].

For future work we consider generalising the liveness proper-
ties to also allow session start as a request event, and session-end
as a response event. This would e.g. allow expressing the general
property that if a particular session is started, it must be ended. As
liveness constraints are often veriÞed under some fairness assump-

3

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

!9:5#3P#>HE7=Q#<A8:6

11

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

!9:5#3P#>HE7=Q#<A8:6

11

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

selections & responses in loops

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

!9:5#3P#>HE7=Q#<A8:6

11

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

yet unfulÞlled responses

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

12

(T-ACC)
! , a : ! ! "; " # k ; k : $ % P " k : !

! , a : ! ! "; " ; $ % a(k). P " $
(T-REQ)

! , a : ! ! "; " # k ; # ák : $ % P " $ ák : !

! , a : ! ! "; " ; # % a(k). P " $

(T-IN)
! , x : S; " ; # % P " $ ák : !

! ; " ; # % k?(x). P " $ ák : ?(S). !
(T-OUT)

! ; " ; # % P " $ ák : ! ! %e : S

! ; " ; # % k!!e". P " $ ák : !(S). !

(T-SEL)
! ; " & k (l j , #j); # ák : (#/l j) ' #j % P " $ ák : ! j

! ; " ; # ák : # % k $ l j . P " $ ák : # { l i [#i] : ! i }
(T-DEL)

! ; " ; # % P " $ ák : !

! ; " ; # % k!! k! "" . P " $ ák : !(%). ! ák! : %

(T-BRA)
! ; " & k (l i , #i); # ák : (#/l i) ' #i % Pi " $ ák : ! i

! ; " ; # , k : # % k " { l i : Pi } i " I " $ ák : & { l i [#i] : ! i }
(T-INS)

! ; " ; # % P " $ ák : ! ák! : %

! ; " ; # % k((k!)) . P " $ ák : ?(%). !

(T-PAR)
! ; " ; # i % Pi " $ i $ 1 ($ 2 # 1 (# 2

! ; " ; # 1) # 2 % P1 | P2 " $ 1) $ 2
(T-END)

! i = end # = k1 : * á. . . ákn : *

! ; # % 0 " k1 : ! 1 á. . . ákn : ! n

(T-COND)
! %e : bool ! ; " ; # % Pi " $

! ; " ; # % if e then P1 elseP2 " $
(T-RES)

! ; " ; # % P " $ ák : +

! ; " ; # % (! k) P " $

(T-BOT)
! ; " ; # % P " $ ák : end

! ; " ; # % P " $ ák :+
(T-REC)

! ; " , X : ($; * ($, #)); # % P " $

! ; " ; # % µX.P " $

(T-VAR)
, k - dom(%) fst(%(k)) = . snd(%(k))

! ; " , X : ($; %); # % X " $
where * ($, #) returns a%, mapping everyk in $ to (* , # (k))

Figure 3. Typing Rules for Session Types

Programming Languages (POPLÕ08), pages 273Ð284. ACM, 2008.

[9] Raghava Rao Mukkamala.A Formal Model For Declarative Work-
ßows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for ßex-
ible business processes management. InProceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPMÕ06, pages 169Ð180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. InPARLEÕ94, volume 817 of
LNCS, pages 398Ð413. Springer-Verlag, 1994.

4

(T-ACC)
! , a : ! ! "; " # k ; k : $ % P " k : !

! , a : ! ! "; " ; $ % a(k). P " $
(T-REQ)

! , a : ! ! "; " # k ; # ák : $ % P " $ ák : !

! , a : ! ! "; " ; # % a(k). P " $

(T-IN)
! , x : S; " ; # % P " $ ák : !

! ; " ; # % k?(x). P " $ ák : ?(S). !
(T-OUT)

! ; " ; # % P " $ ák : ! ! %e : S

! ; " ; # % k!!e". P " $ ák : !(S). !

(T-SEL)
! ; " & k (l j , #j); # ák : (#/l j) ' #j % P " $ ák : ! j

! ; " ; # ák : # % k $ l j . P " $ ák : # { l i [#i] : ! i }
(T-DEL)

! ; " ; # % P " $ ák : !

! ; " ; # % k!! k! "" . P " $ ák : !(%). ! ák! : %

(T-BRA)
! ; " & k (l i , #i); # ák : (#/l i) ' #i % Pi " $ ák : ! i

! ; " ; # , k : # % k " { l i : Pi } i " I " $ ák : & { l i [#i] : ! i }
(T-INS)

! ; " ; # % P " $ ák : ! ák! : %

! ; " ; # % k((k!)) . P " $ ák : ?(%). !

(T-PAR)
! ; " ; # i % Pi " $ i $ 1 ($ 2 # 1 (# 2

! ; " ; # 1) # 2 % P1 | P2 " $ 1) $ 2
(T-END)

! i = end # = k1 : * á. . . ákn : *

! ; " ; # % 0 " k1 : ! 1 á. . . ákn : ! n

(T-COND)
! %e : bool ! ; " ; # % Pi " $

! ; " ; # % if e then P1 elseP2 " $
(T-RES)

! ; " ; # % P " $ ák : +

! ; " ; # % (! k) P " $

(T-BOT)
! ; " ; # % P " $ ák : end

! ; " ; # % P " $ ák :+
(T-REC)

! ; " , X : ($; * ($, #)); # % P " $

! ; " ; # % µX.P " $

(T-VAR)
, k - dom(%) fst(%(k)) = . snd(%(k))

! ; " , X : ($; %); # % X " $
where * ($, #) returns a%, mapping everyk in $ to (* , # (k))

Figure 3. Typing Rules for Session Types

Programming Languages (POPLÕ08), pages 273Ð284. ACM, 2008.

[9] Raghava Rao Mukkamala.A Formal Model For Declarative Work-
ßows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for ßex-
ible business processes management. InProceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPMÕ06, pages 169Ð180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. InPARLEÕ94, volume 817 of
LNCS, pages 398Ð413. Springer-Verlag, 1994.

4

)34:#J7K:#"HE7=Q#(A8:6

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

"HE7=Q#J7K:#(:OA<673=

13

(T-ACC)
! , a : ! ! "; " # k ; k : $ % P " k : !

! , a : ! ! "; " ; $ % a(k). P " $
(T-REQ)

! , a : ! ! "; " # k ; # ák : $ % P " $ ák : !

! , a : ! ! "; " ; # % a(k). P " $

(T-IN)
! , x : S; " ; # % P " $ ák : !

! ; " ; # % k?(x). P " $ ák : ?(S). !
(T-OUT)

! ; " ; # % P " $ ák : ! ! %e : S

! ; " ; # % k!!e". P " $ ák : !(S). !

(T-SEL)
! ; " & k (l j , #j); # ák : (#/l j) ' #j % P " $ ák : ! j

! ; " ; # ák : # % k $ l j . P " $ ák : # { l i [#i] : ! i }
(T-DEL)

! ; " ; # % P " $ ák : !

! ; " ; # % k!! k! "" . P " $ ák : !(%). ! ák! : %

(T-BRA)
! ; " & k (l i , #i); # ák : (#/l i) ' #i % Pi " $ ák : ! i

! ; " ; # , k : # % k " { l i : Pi } i " I " $ ák : & { l i [#i] : ! i }
(T-INS)

! ; " ; # % P " $ ák : ! ák! : %

! ; " ; # % k((k!)) . P " $ ák : ?(%). !

(T-PAR)
! ; " ; # i % Pi " $ i $ 1 ($ 2 # 1 (# 2

! ; " ; # 1) # 2 % P1 | P2 " $ 1) $ 2
(T-END)

! i = end # = k1 : * á. . . ákn : *

! ; " ; # % 0 " k1 : ! 1 á. . . ákn : ! n

(T-COND)
! %e : bool ! ; " ; # % Pi " $

! ; " ; # % if e then P1 elseP2 " $
(T-RES)

! ; " ; # % P " $ ák : +

! ; " ; # % (! k) P " $

(T-BOT)
! ; " ; # % P " $ ák : end

! ; " ; # % P " $ ák :+
(T-REC)

! ; " , X : * ($, #); # % P " $

! ; " ; # % µX.P " $

(T-VAR)
, k - dom(f) fst(f (k)) = . snd(f (k))

! ; " , X : (f, $); # % X " $
where * ($, #) returns af, mapping everyk in $ to

(* , # (k), $)

Figure 3. Typing Rules for Session Types

Programming Languages (POPLÕ08), pages 273Ð284. ACM, 2008.

[9] Raghava Rao Mukkamala.A Formal Model For Declarative Work-
ßows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for ßex-
ible business processes management. InProceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPMÕ06, pages 169Ð180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. InPARLEÕ94, volume 817 of
LNCS, pages 398Ð413. Springer-Verlag, 1994.

4

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section:

A trace satisfy the propertyl ¥# $ for $ = l1 ! . . . lm if any
occurrence of the labell is eventually followed by a labell i for
somei %{ 0, . . . , m} , and in general, a trace satisÞes the property
l ¥# # for # = $0 $. . . $n " 1 if it satisÞesl ¥# $j for all
j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($
where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : (f, $) | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The envi-
ronment" maps process variables to a function that maps a session
channel to a pair of respectively a session environment and a live-
ness constraint:

" ::= " , X : f | +
f ::= f, k : () , #) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We
then deÞne the accumulation operator (used in the T-BRA and T-

2

The protocol (session) for the seller could be implemented in
several ways. For instance,

a(k). µX. k !

!
"

#

offer : k?(x). if (notEnough(x)) then
k ! more. X elsek ! ok. X

stop : X

$
%

&

gives an implementation where, for some values ofx, the seller
could decide to inÞnitely ask for more, ending up in a somehow
unwanted computation. On the other hand, the following process

a(k). µX. k !
'

offer : k?(x). k ! ok. X
stop : X

(

still implements the session described by our type, but satisfying
the liveness property that if an offer is made, this deal is eventually
ended.

The example illustrates, that it would be relevant to constrain
the session protocol further to require request-response liveness
properties, where the usual in-session selection of branches can be
used in the speciÞcation as request and response events.

We suggest that such properties could be intuitively expressed
by allowing branching and selection labels to be annotated with a
(conjunction of) disjunctive response requirements.

For instance, if we wanted to require that theok or stop branch
must eventually be selected if an offer is made, we could add the
following annotation to the type above.

µt. &
'

offer [ok ! stop] :?(int). " { more: t, ok : t} ,
stop : t

(

requiring the request-response liveness property

offer ¥# ok ! stop .

The Þrst process above should thennotbe well-typed, while the
second should pass the type check.

2. Session Calculus and the Liveness Property
As session calculus we use a variant of the" -calculus with sessions
[7, 11] which outlaws restriction on public channels, and allows
replicated behaviour only for services. This choice is not crucial
for the deÞnition of live-sessions.

Syntax. Let a, b, c, x, y, z, . . . range overservice (or public)
channels; k, k ! , t, s, . . . over session (or private) channels; and
e, e! , . . . over public channels, and arithmetic and other Þrst-order
expressions.
Above, a process includes service (accept), and invocations (re-
quest); as well as in-session communication (input, output), receive
and send of session channels (inputS, delegation), and branching
(branch, select). The other operators are standard. The free session
(service) channels of a processP , denoted byfsc(P) (fv(P)), are
deÞned as usual.

Semantics As semantics we use the standard reduction seman-
tics # [7] except selection reduction steps are annotated with the
selected label. This allows us to deÞne the trace language for a pro-
cess and the liveness properties our type system will enforce. Let
Tr (P) refer to the set of Þnite and inÞnite traces of labels of the
process P.

Liveness We can now deÞne the liveness property proposed in
our introduction.

DEFINITION 1 (Liveness).Assume a disjunctive response# =
$0 $ $1 $. . . $ $n " 1 for $i = l i, 1 ! . . . ! l i,m i . A trace%%Tr(P)
of a processP then satisÞes the request-response liveness property
l ¥# # if for all k < |%|, if %k = l then for all i %{ 0, . . . , n & 1}

there existsj % { 1, . . . , m i } such that there existsk! > k for
which%k ! = l i,j .

We say that a processP has the liveness property wrt a set of
response liveness propertiesP whenever each trace%of P satisÞes
every property inP .

The intuitive meaning of the liveness property is as stated in the
previous section, that a trace satisfy the propertyl ¥# $ for
$ = l1 ! . . . lm if any occurrence of the labell is eventually
followed by a labell i for somei % { 0, . . . , m} , and in general,
a trace satisÞes the propertyl ¥# # for # = $0 $. . . $n " 1 if it
satisÞesl ¥# $j for all j %{ 0, . . . , n & 1} .

3. Live Session Typing
Session Types with Responses.The generalization of session
types to session types with responses is given by the following
grammar:

& ::= ?('). & | !('). & | & { l i [#i] : &i } | " { l i [#i] : &i } |
end | µt. & | t

' ::= S | & S ::= basic | ' &(
::=) | $ | # $ # $::= l | $! $

Here, ?('). & and !('). & denote in-session input and output
followed by the communications in&. The type' abstracts what
is communicated: a basic value (basicdenotes basic types, e.g.,int
or bool), a service channel of type' &(, or a session channel of type
&. Finally, & { l i [#i] : &i } and " { l i [#i] : &i } denote branching
and selection types, andend is the inactive session. Branching
and selection have been enhanced with disjunctive responses (#) as
introduced in the previous section. The response) (true) represents
the empty response, and thus we will usually writel for l [)].

Typing. We can now give a typing system for typing processes in
the" -calculus with sessions introduced above. Environments have
the form:

! , " , # * P ($

where! is theservice environment, " is theprocess environment,
is theresponse environmentand$ is thesession environment. !
and$ are assignments from service and session channels respec-
tively to session types with responses. The enviornment# records
for each sessionk to the responses that are still pending. The en-
vironment" maps process variables to a function that maps a ses-
sion channel to a triple of respectively observed labels since start
of recursion, the required responses since the start, and a session
environment:

" ::= " , X : f | +
f ::= f, k : () , #, $) | +

The session environment is as standard used for typing recursion
variables. The liveness constraint is a pair of respectively a con-
junction of labels) = l1 $. . . $ ln and a disjunctive response
#. The intuition is that the liveness constraint accumulates respec-
tively the labels and the responses that have occured since the re-
cursion loop was initiated. We then add the additional condition in
the type rule for recursion variables that the conjunction of lables
must imply (and thus fulÞll) the accumulated responses. DeÞne
#! = #1 $. . . $ #n if # = k : #1 á. . . ák : #n .

For a labell and disjunctive response# we deÞne the operation
#/l inductively as follows. For the base cases, deÞne) /l =) ,
and$/l =) if $ = l1 ! . . . ! ln andl = l i for somei % n, and
$/l = $ otherwise. For the inductive case deÞne($ $ #)/l = #/l ,
if $/l =) and($ $ #)/l = $ $ #/l otherwise.

We then use() , #!) to represent the initial liveness constraint,
which is assigned to the recursion variable in the (T-REC) rule. We

2

(T-ACC)
! , a : ! ! "; " # k ; k : $ % P " k : !

! , a : ! ! "; " ; $ % a(k). P " $
(T-REQ)

! , a : ! ! "; " # k ; # ák : $ % P " $ ák : !

! , a : ! ! "; " ; # % a(k). P " $

(T-IN)
! , x : S; " ; # % P " $ ák : !

! ; " ; # % k?(x). P " $ ák : ?(S). !
(T-OUT)

! ; " ; # % P " $ ák : ! ! %e : S

! ; " ; # % k!!e". P " $ ák : !(S). !

(T-SEL)
! ; " & k (l j , #j); # ák : (#/l j) ' #j % P " $ ák : ! j

! ; " ; # ák : # % k $ l j . P " $ ák : # { l i [#i] : ! i }
(T-DEL)

! ; " ; # % P " $ ák : !

! ; " ; # % k!! k! "" . P " $ ák : !(%). ! ák! : %

(T-BRA)
! ; " & k (l i , #i); # ák : (#/l i) ' #i % Pi " $ ák : ! i

! ; " ; # , k : # % k " { l i : Pi } i " I " $ ák : & { l i [#i] : ! i }
(T-INS)

! ; " ; # % P " $ ák : ! ák! : %

! ; " ; # % k((k!)) . P " $ ák : ?(%). !

(T-PAR)
! ; " ; # i % Pi " $ i $ 1 ($ 2 # 1 (# 2

! ; " ; # 1) # 2 % P1 | P2 " $ 1) $ 2
(T-END)

! i = end # = k1 : * á. . . ákn : *

! ; " ; # % 0 " k1 : ! 1 á. . . ákn : ! n

(T-COND)
! %e : bool ! ; " ; # % Pi " $

! ; " ; # % if e then P1 elseP2 " $
(T-RES)

! ; " ; # % P " $ ák : +

! ; " ; # % (! k) P " $

(T-BOT)
! ; " ; # % P " $ ák : end

! ; " ; # % P " $ ák :+
(T-REC)

! ; " , X : * ($, #), $; # % P " $

! ; " ; # % µX.P " $

(T-VAR)
, k - dom(f) fst(f (k)) = . snd(f (k))

! ; " , X : (f, $); # % X " $
where * ($, #) returns af, mapping everyk in $ to

(* , # (k))

Figure 3. Typing Rules for Session Types

Programming Languages (POPLÕ08), pages 273Ð284. ACM, 2008.

[9] Raghava Rao Mukkamala.A Formal Model For Declarative Work-
ßows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for ßex-
ible business processes management. InProceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPMÕ06, pages 169Ð180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. InPARLEÕ94, volume 817 of
LNCS, pages 398Ð413. Springer-Verlag, 1994.

4

(T-ACC)
! , a : ! ! "; " # k ; k : $ % P " k : !

! , a : ! ! "; " ; $ % a(k). P " $
(T-REQ)

! , a : ! ! "; " # k ; # ák : $ % P " $ ák : !

! , a : ! ! "; " ; # % a(k). P " $

(T-IN)
! , x : S; " ; # % P " $ ák : !

! ; " ; # % k?(x). P " $ ák : ?(S). !
(T-OUT)

! ; " ; # % P " $ ák : ! ! %e : S

! ; " ; # % k!!e". P " $ ák : !(S). !

(T-SEL)
! ; " & k (l j , #j); # ák : (#/l j) ' #j % P " $ ák : ! j

! ; " ; # ák : # % k $ l j . P " $ ák : # { l i [#i] : ! i }
(T-DEL)

! ; " ; # % P " $ ák : !

! ; " ; # % k!! k! "" . P " $ ák : !(%). ! ák! : %

(T-BRA)
! ; " & k (l i , #i); # ák : (#/l i) ' #i % Pi " $ ák : ! i

! ; " ; # , k : # % k " { l i : Pi } i " I " $ ák : & { l i [#i] : ! i }
(T-INS)

! ; " ; # % P " $ ák : ! ák! : %

! ; " ; # % k((k!)) . P " $ ák : ?(%). !

(T-PAR)
! ; " ; # i % Pi " $ i $ 1 ($ 2 # 1 (# 2

! ; " ; # 1) # 2 % P1 | P2 " $ 1) $ 2
(T-END)

! i = end # = k1 : * á. . . ákn : *

! ; " ; # % 0 " k1 : ! 1 á. . . ákn : ! n

(T-COND)
! %e : bool ! ; " ; # % Pi " $

! ; " ; # % if e then P1 elseP2 " $
(T-RES)

! ; " ; # % P " $ ák : +

! ; " ; # % (! k) P " $

(T-BOT)
! ; " ; # % P " $ ák : end

! ; " ; # % P " $ ák :+
(T-REC)

! ; " , X : * ($, #), $; # % P " $

! ; " ; # % µX.P " $

(T-VAR)
, k - dom(f) fst(f (k)) = . snd(f (k))

! ; " , X : (f, $); # % X " $
where * ($, #) returns af, mapping everyk in $ to

(* , # (k))

Figure 3. Typing Rules for Session Types

Programming Languages (POPLÕ08), pages 273Ð284. ACM, 2008.

[9] Raghava Rao Mukkamala.A Formal Model For Declarative Work-
ßows - Dynamic Condition Response Graphs. PhD thesis, IT Univer-
sity of Copenhagen, March 2012.

[10] M. Pesic and W. M. P. van der Aalst. A declarative approach for ßex-
ible business processes management. InProceedings of the 2006 in-
ternational conference on Business Process Management Workshops,
BPMÕ06, pages 169Ð180, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-
based Language and its Typing System. InPARLEÕ94, volume 817 of
LNCS, pages 398Ð413. Springer-Verlag, 1994.

4

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

!"#$%!&'()!"*#+,#-+.'%/01'%##

1st BEAT, Rome, January 22, 2013

"23456#/789:;<5=9>?#2789:@7>AB9C

RSVP: Live Sessions with Responses

,A>A<:#M3<C#7=#E<3Q<:66

¥More Examples

¥Soundness and Completeness of typing rules

¥Complexity - and type inference

¥Progress & more general properties

¥Extending calculus (parametrized recursion,
bounded loops, fairness,time)

¥Related work..(?)

14

Thursday, January 24, 13

mailto:hilde@itu.dk
mailto:hilde@itu.dk

